De-Biased Graphical Lasso for High-Frequency Data

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Fused Multiple Graphical Lasso

In this paper, we consider the problem of estimating multiple graphical models simultaneously using the fused lasso penalty, which encourages adjacent graphs to share similar structures. A motivating example is the analysis of brain networks of Alzheimer’s disease using neuroimaging data. Specifically, we may wish to estimate a brain network for the normal controls (NC), a brain network for the...

متن کامل

Pathway Graphical Lasso

Graphical models provide a rich framework for summarizing the dependencies among variables. The graphical lasso approach attempts to learn the structure of a Gaussian graphical model (GGM) by maximizing the log likelihood of the data, subject to an l1 penalty on the elements of the inverse co-variance matrix. Most algorithms for solving the graphical lasso problem do not scale to a very large n...

متن کامل

Coordinate descent algorithm for covariance graphical lasso

Bien and Tibshirani (2011) have proposed a covariance graphical lasso method that applies a lasso penalty on the elements of the covariance matrix. This method is definitely useful because it not only produces sparse and positive definite estimates of the covariance matrix but also discovers marginal independence structures by generating exact zeros in the estimated covariance matrix. However, ...

متن کامل

SVD-Based Screening for the Graphical Lasso

The graphical lasso is the most popular approach to estimating the inverse covariance matrix of highdimension data. It iteratively estimates each row and column of the matrix in a round-robin style until convergence. However, the graphical lasso is infeasible due to its high computation cost for large size of datasets. This paper proposes Sting, a fast approach to the graphical lasso. In order ...

متن کامل

High-dimensional data and the Lasso

How would you try to solve a linear system of equations with more unknowns than equations? Of course, there are infinitely many solutions, and yet this is the sort of the problem statisticians face with many modern datasets, arising in genetics, imaging, finance and many other fields. What’s worse, our equations are often corrupted by noisy measurements! In this article we will introduce a stat...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Entropy

سال: 2020

ISSN: 1099-4300

DOI: 10.3390/e22040456